Economies of scale in power generation, transmission and distribution: integration or unbundling?

Atsushi Iimi

Japan Bank for International Cooperation (JBIC) Institute 4-1 Ohtemachi 1-Chome, Chiyoda Tokyo 100-8144 JAPAN Tel: +81-3-5218-9744; E-mail: a-iimi@jbic.go.jp 23rd IAEE North American Conference – Mexico 2003

Concurrent Session: Transmission Issues in Electricity Industry

Common Belief in Power Sector Reform

- Since the mid-1980s, many countries has adopted the unbundling and generation privatization policy.
- ADB (2000) Developing Best Practices for Promoting Private Sector Investment in Infrastructure – Power
 - "The power sector should be completely unbundled into separate generation, transmission, distribution...retailing sectors."
 - "Privatization should include the sale of power distribution utilities, as well as generation."
 - "Open access to transmission...wires...and the ability to trade power are critical."

Motivation of the Study

- Various experiences in developed countries with power-sector liberalized.
 - California electricity crisis in 2000
 - Setback of power markets in England and Wales
- Fundamental question:

Whether unbundling is really suitable and feasible, particularly in the context of developing countries?

- Focus on a traditional issue about diseconomies of scale in each stage of power generation and distribution.
- Provide an empirical result with data from Vietnamese electricity industry and an implication from the viewpoint of double marginalization (Spengler, 1950).

Earlier Studies related to Vertical Integration in Electricity Industry

- Vertical integration economies
 - Economies of scope -- 42% efficiency gain of integration in US (Kwoka, 2002).
 - Allen-Uzawa Elasticity of Substitution -- separability hypothesis rejected in US (Lee, 1995).
 - Subadditivity test -- no evidence of subadditivity in US (Gilsdorf, 1995).
- Effects of power transaction mechanisms
 - Power market auction and transmission constraints (Leautier, 2001)
- Effects of power market structure
 - Market concentration in generation (Borenstein *et al.*, 2002)

Vertical Integration Economies

Sources of integration economies (Landon, 1983; Kwoka, 2002)

- 1. Internalization of externalities in planning and investment (location, timing and matching)
- 2. Reduction of the transaction costs (asset specific investment, contract costs) generated from information asymmetry
- **3.** Reduction of the OM costs
- 4. Reduction of overhead costs by sharing labor
- 5. Saving of double monopoly markup

Earlier Empirical Studies on Economies of Scale in Electricity Industry

- Diminishing returns to scale (RTS) for US generation plants: 0.94-2.52 (Nerlove, 1963).
- ◆ RTS for Australian coal-fired power plants: 1.080 (Coelli, 1996).
- Degree of homogeneity for US steam generation plants: 1.267 (Hisnanick, Kymn, 1999).
- RTS for US steam generation plants: 1.06-1.56 (Kleit, Terrell, 2001).
- RTS for Swiss municipal distribution utilities: 1.02-1.10 (Fillippini, 1998).
- RTS for Swedish retail power distributors: 1.04-1.24 (Kumbhakar, Hjalmarsson, 1998).
- Decreasing marginal cost curve for US vertically integrated utilities (Berry, Mixon, 1999).

Vietnamese Electricity Industry

- Rapid increase in power demand: generated power 9,152 GWh in 1991; 30,608 GWh in 2001.
- A state-owned vertically integrated monopolist, Electricity of Viet Nam under the Ministry of Industry.
- 13 major generation plants; 4 transmission companies; 7 power distribution companies.
- Current restructuring policy:
 - Established the independent accounting system for each unit of generation plants and T&D companies
 - Corporatization and unbundling(?)
 - Integrating transmission companies.
 - Single buyer model i Retail liberalization

Econometrics and Data

- Production function estimation for power generation and distribution separately by SUR method (Hisnanick, Kymn, 1999).
- Flexible translog production function
- Assume that each unit maximizes its own output with respect to of inputs.
- ♦ Parameter restrictions: homogeneity and symmetry $\beta_{ij} = \beta_{ji}, \sum_{ij} \beta_{ij} = \sum_{ji} \beta_{ji} = 0, \sum_i \beta_{Ti} = 0, \sum_i \beta_{LF,i}$
- Estimated returns to scale: $\Theta = \sum_{i} \beta_{i}$
- Originally collected in cooperation with EVN
- Period: 1995 to 2001

Production Function – Generation

 $\ln Y = \beta_0 + \sum_i \beta_i \ln X_i + \beta_T \ln T + \beta_{LF} LF + \frac{1}{2} \sum_i \sum_j \beta_{ij} \ln X_i \ln X_j + \beta_{TT} (\ln T)^2 + \sum_i \beta_{Ti} \ln T \ln X_i + \beta_{LF,LF} (LF)^2 + \sum_i \beta_{LF,i} LF \ln X_i + TypeDummy + \varepsilon$

 $S_{i} = \alpha_{i} + \sum_{j} \alpha_{ij} \ln X_{j} + \alpha_{Ti} \ln T + \alpha_{LF,i} LF$

- 16 power plants
- Inputs: Labor(employee); Capital(installed capacity); Fuel(TJ equivalents)

employee=plant-level personnel expenditure/Avg annual income⁽¹⁾ ⁽¹⁾ CEIC Data Company

- Output: Generated power (GWh)
- Type: Coal-thermal; Gas-turbine; Hydropower; Oil-thermal
- Load factor (Operational heterogeneity)

Production Function – Transmission and Distribution

$$\ln Y = \beta_0 + \sum_i \beta_i \ln X_i + \beta_T \ln T + \beta_{CU} \ln CU + \frac{1}{2} \sum_i \sum_j \beta_{ij} \ln X_i \ln X_j + \beta_{TT} (\ln T)^2 + \sum_i \beta_{Ti} \ln T \ln X_i + \beta_{CUCU} (\ln CU)^2 + \sum_i \beta_{CUi} \ln CU \ln X_i + \beta_{TR} Transmission + \varepsilon S_i = \alpha_i + \sum_j \alpha_{ij} \ln X_j + \alpha_{Ti} \ln T + \alpha_{CU,i} \ln CU$$

- 4 PTC and 7 PC
- Inputs: Labor; Capital(total length of transmission lines); Energy(received power in GWh)
- For cost share equation, assume that power is traded at a unique price, say 495 Dong/kWh ⁽²⁾.

⁽²⁾ Wholesale price to domestic private power distributors

- Dummy for power transmission companies
- Number of retail customers (*economies of customer density*)

Estimation Results – Generation

Table 2: Production Frontier for Power Generation									
Model	OLS	SUR	OLS	SUR	Model	OLS	SUR	OLS	SUR
β_{κ}	1.007	1.008	0.698	0.697	$\beta_{_{KL}}$			-0.052	-0.050
	(0.027)	(0.026)	(0.094)	(0.084)				(0.025)	(0.022)
$\beta_{\scriptscriptstyle L}$	0.040	0.039	0.345	0.346	$oldsymbol{eta}_{\scriptscriptstyle K\!F}$			0.004	0.004
	(0.044)	(0.042)	(0.115)	(0.103)				(0.001)	(0.001)
${m eta}_{\scriptscriptstyle F}$	0.009	0.009	0.069	0.069	${m eta}_{\scriptscriptstyle TT}$			0.013	0.013
	(0.006)	(0.005)	(0.019)	(0.017)				(0.020)	(0.018)
$oldsymbol{eta}_{\scriptscriptstyle LF}$	0.026	0.025	-0.057	-0.055	$oldsymbol{eta}_{\scriptscriptstyle T\!K}$			-0.012	-0.012
	(0.026)	(0.025)	(0.045)	(0.040)				(0.015)	(0.014)
$\beta_{\scriptscriptstyle T}$	2.086	2.086	5.651	5.640	$oldsymbol{eta}_{\scriptscriptstyle T\!L}$			0.013	0.013
	(0.106)	(0.101)	(0.226)	(0.202)				(0.016)	(0.014)
$m{eta}_{\scriptscriptstyle GT}$	-0.038	-0.043	0.356	0.348	$oldsymbol{eta}_{{\scriptscriptstyle LF},{\scriptscriptstyle LF}}$			-2.947	-2.943
	(0.145)	(0.139)	(0.109)	(0.098)				(0.208)	(0.186)
$m{eta}_{\scriptscriptstyle HY}$	0.316	0.322	3.523	3.537	$oldsymbol{eta}_{{\scriptscriptstyle LF},{\scriptscriptstyle K}}$			0.230	0.229
	(0.148)	(0.141)	(0.819)	(0.734)				(0.061)	(0.054)
$\beta_{\scriptscriptstyle OT}$	0.070	0.069	0.072	0.069	$oldsymbol{eta}_{{}_{LF,L}}$			-0.235	-0.234
	(0.076)	(0.073)	(0.060)	(0.053)				(0.061)	(0.055)
$oldsymbol{eta}_{\scriptscriptstyle KK}$			0.093	0.092	${m eta}_{_0}$	-0.053	-0.053	-1.389	-1.380
			(0.037)	(0.033)		(0.200)	(0.191)	(0.245)	(0.220)
$oldsymbol{eta}_{\scriptscriptstyle LL}$			0.013	0.011	Obs	103	103	103	103
			(0.025)	(0.023)	R-Squared	0.9812	0.9812	0.9962	0.9962
$oldsymbol{eta}_{\scriptscriptstyle FF}$			-0.006	-0.006	Note that the	dependent	variable is	the logarithi	m of
			(0.001)	(0.001)	generated power. The standard errors are shown in				
					parentheses.				

Estimation Results – Transmission and Distribution

Table 3: I	Production	Frontier	for	Power	Distribution
			101		

	oduction 110								
Model	OLS	SUR	OLS	SUR	Model	OLS	SUR	OLS	SUR
β_{κ}	0.029	0.029	-0.081	-0.044	$oldsymbol{eta}_{\scriptscriptstyle K\!E}$			-0.052	-0.031
	(0.011)	(0.010)	(0.207)	(0.173)				(0.032)	(0.027)
$oldsymbol{eta}_{\scriptscriptstyle L}$	-0.025	-0.025	0.270	0.273	$\beta_{\scriptscriptstyle TT}$			-0.008	-0.001
	(0.018)	(0.017)	(0.229)	(0.190)				(0.013)	(0.011)
$oldsymbol{eta}_{\scriptscriptstyle E}$	0.987	0.984	0.826	0.791	$oldsymbol{eta}_{\scriptscriptstyle TK}$			-0.029	-0.039
	(0.007)	(0.006)	(0.166)	(0.138)				(0.017)	(0.014)
$oldsymbol{eta}_{\scriptscriptstyle TR}$	-0.200	-0.155	-2.618	-1.877	$m{eta}_{\scriptscriptstyle TL}$			0.064	0.075
	(0.179)	(0.169)	(3.409)	(2.834)				(0.023)	(0.019)
$\beta_{_T}$	0.027	0.028	0.051	0.041	$m{eta}_{\scriptscriptstyle CU,CU}$			0.012	0.008
	(0.007)	(0.007)	(0.030)	(0.025)				(0.021)	(0.017)
$oldsymbol{eta}_{\scriptscriptstyle CU}$	-0.024	-0.021	-0.360	-0.253	$m{eta}_{_{CU,K}}$			-0.006	-0.001
	(0.015)	(0.014)	(0.534)	(0.444)				(0.006)	(0.005)
$oldsymbol{eta}_{\scriptscriptstyle KK}$			0.068	0.058	${\boldsymbol \beta}_{{}_{CU,L}}$			-0.014	-0.019
			(0.066)	(0.055)				(0.005)	(0.004)
$oldsymbol{eta}_{\scriptscriptstyle LL}$			0.055	0.100	${m eta}_{\scriptscriptstyle 0}$	0.203	0.182	2.414	1.654
			(0.120)	(0.099)		(0.135)	(0.127)	(3.328)	(2.767)
$oldsymbol{eta}_{\scriptscriptstyle EE}$			0.156	0.159	Obs	69	69	69	69
			(0.040)	(0.034)	R-Squared	0.9983	0.9982	0.9988	0.9988
$oldsymbol{eta}_{\scriptscriptstyle KL}$			0.005	-0.016	Note that the	dependent	variable is t	the logarithr	n of
			(0.073)	(0.060)	transmitted p	ower. The	standard er	rors are sho	wn in
					parentheses.				
					•				

Estimated Economies of Scale

- Generation: Significantly positive scale economies
- Distribution: Positive but statistically insignificant economies of scale
 Table 4: Estimated Economics of Scale

	Returns to Scale				
Generation	1.112				
Generalion	(0.033)				
Transmission	1.019				
and Distribution	(0.036)				

Both stages are operating under increasing returns to scale.

A monopoly firm can generate (distribute) power more efficiently than one more firm does.

Those two monopolists should not be disintegrated (to avoid double monopoly markup).

Conclusion

- Given current technological conditions, both power generation and distribution operate under increasing returns to scale (initial stage of development).
- Soth stages should be integrated under one entity.
- Limits of the model:
 - No claim about ownership: private or SOE.
 - Not estimating vertical integration economy itself, but following double marginalization model.
 - Questionable empirical model assumption: each unit maximizes his own profit with respect to labor, capital, fuel and energy.